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•  What is PGI Premier Support? 

• What is the motivation behind Premier Support 

• Common Optimization Opportunities 

• ORNL Premier Support work 

• How can you take advantage of the PGI/ORNL relationship? 

• Questions and Answers 

Outline of Today’s Topics 



•  PGI Premier Support is a professional services program offered to select 
customers with the intent of direct engineer to engineer engagement on 
mission critical customer issues. 
  Program components include: 

 PGI Quick Start Seminar with additional customized training options 
 A designated PGI technical contact within engineering 
 PGI Tracker online inquiry tracking system 
 Custom software patches and workarounds 
 Interim PGI releases to address critical issues 
 Custom libraries for runtime debugging 
 Custom application performance analysis and tuning 
 Custom compiler features 

What is PGI Premier Support? 



PGI presented the Quick Start Seminar, an on-site ½ day introduction to PGI 
compilers and tools intended to cover best practices issues for getting code 
up and running optimally and giving correct results in the shortest amount of 
time, at ORNL in November 

PGI offers additional training ranging from “hands-on interaction with 
code” sessions to in depth training on customer specific performance 
profiling, to customer specific application optimization, including assembly 
language seminars. 

Customized training can be incorporated into the Premier Services program 
as desired by the customer. 

If there is enough interest, we can present the Quick Start Seminar again. 

PGI/ORNL Classroom Training 



Customers – especially those with very large systems and specialty 
applications – have motivation to understand in detail the performance of 
their codes and have a willingness to include compiler expertise directly on 
their code development teams. 

Code team members who specialize in the science of the application often do 
not have expertise in how a compiler views their application. 

By adding a PGI compiler engineer to the application development team, the 
team gets access to in depth compiler knowledge, knowledge about how the 
compiler views code (or should view code) and therefore a team member 
who can help guide the code development process to optimize application 
performance while also working on the compiler so that is better understands 
the code. 

PGI Premier Support Motivation 



Oak Ridge – Premier Support Example 
Implemented PGI version of -finstrument_functions for James Rosinski. This is 
needed to support a tool that he has developed called   "GPTL: A tool for  
characterizing parallel and serial application performance“ 

-Minstrument flag to the compiler 

Generates instrumentation calls for entry and exit to functions.  Just after function entry 
 and just before function exit, the following profiling functions will be called with the 
 address of the current function and its call site.   

        void __cyg_profile_func_enter (void *this_fn, 
                                      void *call_site); 
        void __cyg_profile_func_exit  (void *this_fn, 
                                       void *call_site); 
. 
. 



Many scientists an engineers take a semester long course on compilers in 
college.  Our engineers continued that study for the next 20 years. 

They understand how to write code that the compiler can best ingest. 

By examining the assembly code output, they understand when the compiler 
isn’t generating as efficient code as it should. 

There mission is to help you reach an optimal solution to writing, 
maintaining and getting maximal performance from your code. 

Premier support is here for you! 

Put 20 years of compiler expertise 
to work for you 



•  OpenMP 3.0 Support in Fortran and C  (C++ in 8.1) 

•  Continued SPECFP06 and SPECINT06 Performance 
•  PGPROF improvements 
•  PGI Unified Binary enhancements  
•  Common Compiler Feedback Format 
•  Tuning for AMD Shanghai processors 
•  Accelerator Compiler Beta 
•  Improved C++ STL performance, features 
•  Bug fixes 

What’s New in PGI 8.0 



 Common Performance Challenges  
Vectorization on both Intel and AMD processors 

 What is vectorization?  Is my code vectorizing? 

 Conflicts with C++ and F90 “ease of use”  
 programming techniques. C and C++ pointer issues that  
 prevent vectorization. 

Multi-core issues 
 Memory bandwidth 
 MPI, OpenMP, and auto parallelization 

IPA – Interproceedural Analysis and Inlining 
 IPA and inline enabled libraries 
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What is Vectorization on x64 CPUs? 
•  By a Programmer: writing or modifying 

algorithms and loops to enable or maximize 
generation of x64 packed Streaming SIMD 
Extensions (SSE) instructions by a vectorizing 
compiler 

•  By a Compiler: identifying and transforming 
loops to use packed SSE arithmetic instructions 
which operate on more than one data element 
per instruction 
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  127           64 63            0 

 B1      |      B0 

  127           64 63            0 

 A1      |      A0 

  add 

  add 

  127           64 63            0 

 C1      |      C0 

Double-precision Packed SSE 
Operations on x64 CPUs 
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Double-precision Packed SSE 
Implementations on x64 CPUs 

Cycle i:    [A1|A0]   [B1|B0] 
                           \            / 
                   A0+B0 
                            ..... 
                            ..... 
Cycle i + 1:   [A1|A0]   [B1|B0] 
                 \            / 

          A1+B1 
                    A0+B0 

          ..... 
Cycle i + p - 1:   ..... 

         A1+B1 
         A0+B0 
                \ 
         [ .. |C0] 

Cycle I + p:       ..... 
                          ..... 
                          A1+B1 
                              / 
                         [C1|C0] 

1st Gen 
Cycle i:   [A1|A0]   [B1|B0] 
                          \            / 
           [A1+B1|A0+B0] 
                    ..... 
                    ..... 

Cycle i + 1: .....  
  [A1+B1|A0+B0] 
  ..... 

Cycle i + p: ..... 
              ..... 
                    [A1+B1|A0+B0]                                   

           \         /  
                           [C1|C0] 

2nd Gen 
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350 ! 
351 !   Initialize vertex, similarity and coordinate arrays 
352 ! 
353     Do Index = 1, NodeCount 
354        IX = MOD (Index - 1, NodesX) + 1 
355        IY = ((Index - 1) / NodesX) + 1 
356        CoordX (IX, IY) = Position (1) + (IX - 1) * StepX 
357        CoordY (IX, IY) = Position (2) + (IY - 1) * StepY 
358        JetSim (Index)  = SUM (Graph (:, :, Index) * & 
359     &                    GaborTrafo (:, :, CoordX(IX,IY), CoordY(IX,IY))) 
360        VertexX (Index) = MOD (Params%Graph%RandomIndex (Index) - 1, NodesX) + 1 
361        VertexY (Index) = ((Params%Graph%RandomIndex (Index) - 1) / NodesX) + 1 
362     End Do 

Vectorizable Loop in SPECFP2K FACEREC 
Data is REAL*4 

Inner loop at line 358 is vectorizable, can used packed SSE instructions 
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% pgf95 -fast -Minfo  graphRoutines.f90 
… 
localmove: 
   334, Loop unrolled 1 times (completely unrolled) 
   343, Loop unrolled 2 times (completely unrolled) 
   358, Generating vector sse code for inner loop 
   364, Generating vector sse code for inner loop 
           Generating vector sse code for inner loop 
   392, Generating vector sse code for inner loop 
   423, Generating vector sse code for inner loop 
% 

Use –Minfo to see Which Loops Vectorize 

-fast   Includes “–Mvect=sse -Mcache_align –Mnoframe -Mlre” 
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Scalar SSE: Vector SSE: 

Facerec Scalar: 104.2 sec 
Facerec Vector:   84.3 sec 

.LB6_668: 
# lineno: 358 
        movss   -12(%rax),%xmm2  
        movss   -4(%rax),%xmm3  
        subl    $1,%edx  
        mulss   -12(%rcx),%xmm2  
        addss   %xmm0,%xmm2  
        mulss   -4(%rcx),%xmm3  
        movss   -8(%rax),%xmm0  
        mulss   -8(%rcx),%xmm0  
        addss   %xmm0,%xmm2  
        movss   (%rax),%xmm0  
        addq    $16,%rax  
        addss   %xmm3,%xmm2  
        mulss   (%rcx),%xmm0  
        addq    $16,%rcx  
        testl   %edx,%edx  
        addss   %xmm0,%xmm2  
        movaps  %xmm2,%xmm0  
        jg      .LB6_625  

.LB6_1245:  
# lineno: 358  
        movlps  (%rdx,%rcx),%xmm2  
        subl    $8,%eax  
        movlps  16(%rcx,%rdx),%xmm3 
        prefetcht0  64(%rcx,%rsi) 
        prefetcht0  64(%rcx,%rdx) 
        movhps  8(%rcx,%rdx),%xmm2  
        mulps   (%rsi,%rcx),%xmm2 
        movhps  24(%rcx,%rdx),%xmm3  
        addps   %xmm2,%xmm0  
        mulps   16(%rcx,%rsi),%xmm3  
        addq    $32,%rcx  
        testl   %eax,%eax  
        addps   %xmm3,%xmm0  
        jg      .LB6_1245: 
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Benefits of Vectorization - Intel Core 2  
Alegra Kernel Performance 



PGI and Oak Ridge - Vectorization 

•  For all of our fastmath library intrinsics, we created barcelona-tuned 
versions for ORNL.  This involved manually converting assembly movlpd 
to movsd, a few other ops like movddup instead of a movlpd/movhpd 
pair when appropriate.  Created two entry points so both versions could 
exist in a PGI unified binary.  And then the appropriate compiler changes 
to call the correct one.  This ended up speeding up sine and cosine by 
about 30% on a barcelona.  

•  Created vector LOG10.  This allowed some key loops in S3D to 
vectorize thus enabling a significant speed up in the application. 
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Common Barriers to SSE Vectorization 

   Potential Dependencies & C Pointers – Give compiler more  
    info with –Msafeptr, pragmas, or restrict type qualifer 

   Function Calls – Try inlining with –Minline or –Mipa=inline 

   Type conversions – manually convert constants or use flags 

   Large Number of Statements  – Try –Mvect=nosizelimit 

   Too few iterations – Usually better to unroll the loop 

   Real dependencies – Must restructure loop, if possible 



Vectorizable C Code Fragment? 
217    void func4(float *u1, float *u2, float *u3, … 
          … 
221    for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++) 
222          u3[i] += clz * (p1[i] + p2[i]); 
223    for (i = -NI+1, i < nx+NE-1; i++) { 
224          float vdt = v[i] * dt; 
225          u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i]; 
226    }  

% pgcc –fastsse –Minfo –Mneginfo functions.c 
func4: 
     221, Loop unrolled 4 times 
     221, Loop not vectorized due to data dependency 
     223, Loop not vectorized due to data dependency 



Pointer  Arguments Inhibit Vectorization  

% pgcc –fastsse –Msafeptr –Minfo functions.c 
func4: 
     221, Generated vector SSE code for inner loop 
             Generated 3 prefetch instructions for this loop 
     223, Unrolled inner loop 4 times 

217    void func4(float *u1, float *u2, float *u3, … 
          … 
221    for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++) 
222          u3[i] += clz * (p1[i] + p2[i]); 
223    for (i = -NI+1, i < nx+NE-1; i++) { 
224          float vdt = v[i] * dt; 
225          u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i]; 
226    }  



C Constant Inhibits Vectorization  

% pgcc –fastsse –Msafeptr –Mfcon –Minfo functions.c 
func4: 
     221, Generated vector SSE code for inner loop 
             Generated 3 prefetch instructions for this loop 
     223, Generated vector SSE code for inner loop 
             Generated 4 prefetch instructions for this loop      

217    void func4(float *u1, float *u2, float *u3, … 
          … 
221    for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++) 
222          u3[i] += clz * (p1[i] + p2[i]); 
223    for (i = -NI+1, i < nx+NE-1; i++) { 
224          float vdt = v[i] * dt; 
225          u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i]; 
226    }  
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-Msafeptr vs.Pragma vs. restrict 
(sledgehammer vs. scalpel) 

–M[no]safeptr[=all | arg | auto | dummy | local | static | global]  

all   All pointers are safe 

arg   Argument pointers are safe 

local   local pointers are safe 

static   static local pointers are safe 

global  global pointers are safe 

#pragma [scope] [no]safeptr={arg | local | global | static | all},… 

Where scope is global, routine or loop 



3 Steps to Multi-core 
Performance 

1) Optimize single-core performance 

2) Enable multi-core auto-parallelization  

3) Tune for multi-core with OpenMP  
directive-based parallelization 



1. Optimize Single-core Performance 

PGI compilers give realtime optimization hints, 
and support many tuning options and 
directives 

 See http://www.pgroup.com/lit/
pgi_article_tuning.pdf for generic tuning tips 

 See http://www.pgroup.com/lit/
pgi_article_CUG07.pdf for C++ tuning tips 

Use PGPROF or other profilers to reveal single-
core performance issues  



Conflicts with C++ and F90 “ease of use”  
programming techniques. C and C++ pointer 
issues that prevent vectorization. 

Modern programming techniques in C++ and 
occasionally in object oriented F90 code lead 
to levels of code obfuscation that the compiler 
simply is unable to unwind. 



Alegra – C++ Challenges (con’t) 
For this dataset, the value of mat_max is 21, and the number of  
 element blocks(mesh->Num_Element_Blocks()) is 1.  The LOCAL_ELEMENT_LOOP  
 is excuted 160000 times.  

 Using the debugger, the three lines of code:  

 1) Real  volume_old         = el->Volume_Fraction(m);  

    The assembly instructions generated for this line of code  
    dereferenced memory 4 times as follows:  

    movq    160(%rcx), %rdx      <--- Address of el.material_data  
    movq    (%rdx,%rax,8), %rsi  <--- Address of el.material_data[m].material  
    movq    40(%rsi), %rax       <--- Address of el.material_data[m].material.data[m']  
    movl    (%rax), %xmm0        <--- Value of volume_old  



Alegra – C++ Challenges (con’t) 
2) Real* scratch            = el->Scalar_Array(REMAP_SCRATCH);  

    The assembly instructions generated for this line of code  
    dereferenced memory 2 times as follows:  

    movq    8(%rdx,%rcx), %rsi   <--- Address of el.data  
    leaq    (%rsi,%rax,8), %rdi  <--- Address of el.data+m  

 3) Material_Data* pmat_data = el->Material_Data_Ptr(m);  

    The assembly instructions generated for this line of code  
    dereferenced memory 2 times as follows:  

    movq    160(%rcx), %r9       <--- Address of el.material_data  
    movq    (%r9,%r8,8), %rax    <--- Address of el.material_data[m]  
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Remedies for Alegra pointer issues 

 Short circuiting the pointer chain from one time step to 
the next 

 Rearrange the location of critical element in the data 
structure so that element data is in cache when data 
structure is first referenced 



PGI and Oak Ridge – Listing Files 

•  ORNL requested a feature which combined the output of 
compiler messages and program files. 

–  Users can get information about what the optimizations 
that compiler makes, and the reasons it is unable to make 
other optimizations by using the compile time flags: 

-Minfo and –Mneginfo 

–  At the request of ORNL, users can now see these 
messages along with the code that is is causing the 
messages by using the -Minfo=ccff 



Demo: Initial Build/Run 



Demo: Profile of Initial Run 



Demo: Build/Run with -Msafeptr 



Demo: Profile of –Msafeptr Run 



Demo: Build/Run with -Mfcon 



Demo: Profile of –Mfcon Run 



-Mconcur[=option[,option]] where option is: 

 [no]altcode:<n>  [Don’t] Generate alternate serial code for parallel loops 

 dist:block   Parallelize with block distribution (default) 

 dist:cyclic  Parallelize with cyclic distribution 

 cncall   Loops with calls are candidates for parallelization 

 [no]assoc   Disable/Enable parallelization of loops with reductions 

innermost   Enable parallelization of innermost loops 

levels:<n>   Parallelize loops nested at most n levels deep 

bind     Bind threads to cores.  Must be specified at link time 

2. Enable Multi-core Auto-parallelization 



SPEC OMP2001 314.MGRID_M 

3D Multigrid Solver 
% pgf95 –Mconcur –Minfo –fast  mgrid.f 
… 
resid: 
     366, Parallel code for non-innermost loop activated 
                  if loop count >= 33; block distribution 
     368, 4 loop-carried redundant expressions removed 
                  with 12 operations and 16 arrays 
             Generated 4 alternate loops for the inner loop 
             Generated vector SSE code for inner loop 
             Generated 8 prefetch instructions for this loop 
             Generated vector SSE code for inner loop 
             Generated 8 prefetch instructions for this loop 



314.MGRID_M Benchmark 
Main Loop 

         DO 10 I3=2, N-1 
         DO 10 I2=2,N-1 
         DO 10 I1=2,N-1 
10             R(I1,I2,I3) = V(I1,I2,I3)    
      &                           -A(0)*(U(I1,I2,I3))    
      &                           -A(1)*(U(I1-1,I2,I3)+U(I1+1,I2,I3)    
      &                                     +U(I1,I2-1,I3)+U(I1,I2+1,I3)    
      &                                     +U(I1,I2,I3-1)+U(I1,I2,I3+1))    
      &                           -A(2)*(U(I1-1,I2-1,I3)+U(I1+1,I2-1,I3)    
      &                                     +U(I1-1,I2+1,I3)+U(I1+1,I2+1,I3)    
      &                                     +U(I1,I2-1,I3-1)+U(I1,I2+1,I3-1)    
      &                                     +U(I1,I2-1,I3+1)+U(I1,I2+1,I3+1)    
      &                                     +U(I1-1,I2,I3-1)+U(I1-1,I2,I3+1)    
      &                                     +U(I1+1,I2,I3-1)+U(I1+1,I2,I3+1) )    
      &                           -A(3)*(U(I1-1,I2-1,I3-1)+U(I1+1,I2-1,I3-1)    
      &                                     +U(I1-1,I2+1,I3-1)+U(I1+1,I2+1,I3-1)    
      &                                     +U(I1-1,I2-1,I3+1)+U(I1+1,I2-1,I3+1)    
      &                                     +U(I1-1,I2+1,I3+1)+U(I1+1,I2+1,I3+1))  



Auto-parallel 314.MGRID_M Runtime      
 on Single Socket Quad-core AMD 

Opteron 

NUM_THREADS Runtime 
(seconds) Speed-up 

1 208 

2 116 1.8 

4 100 2.1 



3. Tune for Multi-core with OpenMP 
  PGI supports full native OpenMP 3.0 parallel programming 
directives/pragmas/runtime for F95 & C 

  C++ support in next major release 

  PGI provides environment variables to maximize  
   OpenMP performance (thread scheduling, binding, etc) 

  Use –mp option to enable OpenMP compilation 

  OpenMP programs compiled w/out –mp “just work” 

  –Mconcur and –mp can be used together 



SPEC OMP2001 314.MGRID_M 

3D Multigrid Solver 
% pgf95 –mp –Minfo –fastsse  mgrid.f 
… 
resid: 
     360, Parallel region activated 
     366, Parallel loop activated with static block schedule 
     368, 4 loop-carried redundant expressions removed 
                  with 12 operations and 16 arrays 
             Generated 4 alternate loops for the inner loop 
             Generated vector SSE code for inner loop 
             Generated 8 prefetch instructions for this loop 
             … 
      382, Parallel region terminated 



OpenMP 314.MGRID_M Runtime      
 on Single Socket Quad-core AMD 

Opteron 

NUM_THREADS Runtime 
(seconds) Speed-up 

1 205 

2 113 1.8 

4 97 2.1 



1 Step to Multi-core/Multi-Socket 
Performance? 

1)  Increase the thread count and rerun 
the application… 

% export OMP_NUM_THREADS=8 
% a.out 



314.MGRID_M Runtime     
 on Dual Socket Quad-core AMD Opteron 

NUM_THREADS Auto-Par executable 
Runtime(seconds) 

OpenMP executable 
Runtime(seconds) 

1 208 205 

2 116 113 

4 100 97 

8 92 90 



Multi-Socket Introduces Potential NUMA 
Issues 

Physical memory location based on first touch 

Use /usr/bin/numactl –hardware to identify potential 
memory hotspots while application is running 

Minimize data initialization in serial regions of code 



Modified 314.MGRID_M Runtime     
 on Dual Socket Quad-core AMD Opteron 

NUM_THREADS Auto-Par executable 
Runtime(seconds) 

OpenMP executable 
Runtime(seconds) 

1 208 205 

2 116 113 

4 100 97 

8 55 53 



  Use correct target processor, -tp barcelona-64 

  Vectorization and single core performance is a good start 

  Compiler Feedback: a positive force in HPC SW Evolution 

  The PGI -Mconcur flag can handle simple cases, and might 
surprise you with where it can find parallelism 

  OpenMP gives finer control, is supported everywhere 

  Gather some profiling data on where cache misses or  other 
delays occur 

Multi-core Performance Guidelines 



  Design algorithms that minimize data movement and 
maximize data movement efficiency, rather than minimizing 
computations.  FLOPS are free, bandwidth is precious. 

  Strip-mining or other caching techniques (tiling, blocking) 
can be important. 

  Use directives/pragmas/compiler options for fine-tuned 
control over memory-tuning optimization. 

  Pay attention to NUMA effects when running on            multi-
socket nodes.  Control location of thread execution using 
environment variables. 

Multi-core Performance Guidelines 
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What can Interprocedural Analysis and 
Optimization with –Mipa do for You? 

   Interprocedural constant propagation 

   Pointer disambiguation 

   Alignment detection, Alignment propagation 

   Global variable mod/ref detection 

   F90 shape propagation 

   Function inlining 

   IPA optimization of libraries, including inlining 
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Effect of IPA on  
the WUPWISE Benchmark 

PGF95 Compiler Options Execution Time  in Seconds  

–fast 156.49 
–fast –Mipa=fast 121.65 
–fast –Mipa=fast,inline 91.72 

   –Mipa=fast => constant propagation => compiler sees complex 
    matrices are all 4x3 => completely unrolls loops 

   –Mipa=fast,inline => small matrix multiplies are all inlined 
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Using Interprocedural Analysis 
   Must be used at both compile time and link time 

   Non-disruptive to development process – edit/build/run 

   Speed-ups of 5% - 10% are common 

   –Mipa=safe:<name> - safe to optimize functions which call or are 
called from unknown function/library name 

   –Mipa=libopt – perform IPA optimizations on libraries 

   –Mipa=libinline – perform IPA inlining from libraries 
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Other C++ recommendations 

   Encapsulation, Data Hiding  - small functions, inline! 

   Exception Handling – use –no_exceptions until 7.0 

   Overloaded operators, overloaded functions - okay 

   Pointer Chasing - -Msafeptr, restrict qualifer, 32 bits? 

   Templates, Generic Programming – now okay 

   Inheritance, polymorphism, virtual functions – runtime lookup 
or check, no inlining, potential performance penalties 



53 

Explicit Function Inlining 
–Minline[=[lib:]<inlib> | [name:]<func> | except:<func> | 
                 size:<n> | levels:<n>]  

[lib:]<inlib>   Inline extracted functions from inlib 

[name:]<func>  Inline function func 

except:<func>   Do not inline function func 

size:<n>   Inline only functions smaller than n  
   statements (approximate) 

levels:<n>  Inline n levels of functions 

For C++ Codes, PGI Recommends IPA-based 
inlining or –Minline=levels:10! 
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   Miscellaneous Optimizations (1) 

   –Mfprelaxed – single-precision sqrt, rsqrt, div performed 
    using reduced-precision reciprocal approximation  

   –lacml and –lacml_mp – link in the AMD Core Math Library 

   –Mprefetch=d:<p>,n:<q> – control prefetching distance,  
    max number of prefetch instructions per loop 

   –tp k8-32 – can result in big performance win on some  
    C/C++ codes that don’t require > 2GB addressing;  
    pointer and long data become 32-bits 
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   Miscellaneous Optimizations (2) 
   –O3 – more aggressive hoisting and scalar replacement;  
    not part of –fastsse, always time your code to make sure  
    it’s faster 

   For C++ codes: ––no_exceptions –zc_eh 

   –M[no]movnt –   disable / force non-temporal moves 

   –V[version] to switch between PGI releases at file level 

   –Mvect=noaltcode – disable multiple versions of    loops 



  Delivers education to better use compilers and tools 

  Provides direct scientist to engineer interaction 

  Provides custom compiler and library work 

  Provides a compiler engineer for your code development   team 

  Results in faster application results! 

Take advantage of your Premier Support opportunities! 

PGI Premier Conclusions 
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